1. Most Discussed
  2. Gainers & Losers
ADO 1.5¢

Tease No5

  1. riverbrae

    2,515 Posts.

    Anteo Technologies ‏@AnteoTech 2h2 hours ago Revolutionary material, Silicene for Atom-Thick, Fast Transistors http://buff.ly/1vi1Euh
    Details



    Atom-Thick Silicon Makes Crazy-Fast Transistors

    Materials News

    0 Sidenotes

    What's a ?
    Atom-Thick Silicon Makes Crazy-Fast Transistors

    An exotic form of silicon, called silicene, could enable a new generation of faster computers.
    googletag.cmd.push(function() { googletag.display("dfp-ad-tr_www_body_rail_right_top_portrait"); }); Why It Matters

    Silicene could make electric circuits thousands of times faster.
    A scanning tunneling microscope image of silicene.

    An exotic but tricky-to-use new form of silicon is being eyed as a way to build much faster computer chips. And now, those who see its potential can claim a minor victory by making the first transistors out of the stuff.
    The material in question, called silicene, comes in layers of silicon just one-atom thick. This structure gives the material fantastic electrical properties, but it also means it’s devilishly tricky to produce and work with. Even testing its basic properties in the lab has proved difficult.
    Now Deji Akinwande, a computer engineer at the University of Texas at Austin, has figured out how to work with the stubborn material well enough to make the first silicene transistors. His first-of-their-kind devices are described today in the journal Nature Nanotechnology, and they live up to silicene’s promise by switching with extraordinary speed.
    Another atom-thick material, graphene, which is made from carbon, has gained attention in recent years for its own electrical properties. The appeal of silicene, says Akinwande, is that it’s made from the stuff Silicon Valley was built on. In theory, it should be easier for chipmakers to work with than some new material. “If we can get good properties out of it, it can be translated immediately by the semiconductor industry,” Akinwande says.
    In 2007, Lok Lew Yan Voon, a physicist at Citadel Military College of South Carolina, who published some of the first theoretical work on silicene, calculated that the material’s electrical properties should be similar to those of graphene. In theory, electrons can cruise through both graphene and silicene without encountering as many obstacles, enabling very speedy circuits.
    Unlike graphene, however, silicene doesn’t occur naturally. It has to be grown in the lab on a sheet of silver. Carbon is also more stable in its two-dimensional form, whereas silicon atoms are under strain in this form. To date, only a handful of groups have succeeded in making silicene in the lab. One group, in France, grew a nanoscale ribbon of the stuff in 2010. A few others succeeded in fabricating the material in 2012.
    Once silicene is made, its instability means it must be protected, and that makes it difficult to work with. Akinwande found a way around this problem by growing silicene on a thin film of silver capped with aluminum oxide. The whole thing is then peeled off, and then placed on a silicon dioxide wafer with the silver side up. Finally, the silver is patterned to make the electrical contacts for a transistor. Once the device is finished, it is stable under vacuum conditions.
    googletag.cmd.push(function() { googletag.display("dfp-ad-tr_www_body_content_portrait_in_story"); });
    That might not turn out to be commercially practical, but it’s an important first demonstration, says Lok. The performance of the transistors also lines up with theoretical predictions about silicene’s speedy highway for electrons. “They managed to do what many people have been trying to do,” he says.
    This demonstration is especially important because there has been skepticism about silicene’s potential, says Patrick Vogt, a researcher at the Technische Universität Berlin and one of a handful of researchers who have succeeded in growing the material. Vogt is currently working on new methods for making it.
    Fengnian Xia, an electrical engineer at Yale University who is developing electronics based on graphene, phosphorene, and other two-dimensional materials, might be counted as one of the skeptics. He says the transistor results reported by the Texas group look good and represent a big scientific advance. But as for silicene’s commercial potential, Xia says he’s not convinced that it would be easier to commercialize than graphene, or that it can do anything graphene can’t.
    Vogt says silicene probably won’t replace silicon entirely, but it might add new functionality to today’s chips. “This shows you can actually do something with silicene,” he says.

    0 Sidenotes
    What's a ?
    Share your feedback on this feature »
    Credit: Image courtesy ofUniversity ofTexas Austin
    Tagged: Materials, silicon, transistors

    Really puzzled by this rush of activity on Anteo's Twitter site

    Could it be that a group of those 100> companies that were trying M+G are getting close to launch?

    Perhaps the Company would be good enough to explain why the flurry of Tweets


    RB

DISCLAIMER:
Before making any financial decisions based on what you read, always consult an advisor or expert.

The HotCopper website is operated by Report Card Pty Ltd. Any information posted on the website has been prepared without taking into account your objectives, financial situation or needs and as such, you should before acting on the information or advice, consider the appropriateness of the information or advice in relation to your objectives, financial situation or needs. Please be aware that any information posted on this site should not be considered to be financial product advice.

From time to time comments aimed at manipulating other investors may appear on these forums. Posters may post overly optimistic or pessimistic comments on particular stocks, in an attempt to influence other investors. It is not possible for management to moderate all posts so some misleading and inaccurate posts may still appear on these forums. If you do have serious concerns with a post or posts you should report a Terms of Use Violation (TOU) on the link above. Unless specifically stated persons posting on this site are NOT investment advisors and do NOT hold the necessary licence, or have any formal training, to give investment advice.

Top

Thank you for visiting HotCopper

We have detected that you are running ad blocking software.


HotCopper relies on revenue generated from advertisers. Kindly disable your ad blocking software to return to the HotCopper website.

I understand, I have disabled my ad blocker. Let me in!

Need help? Click here for support.