LYC 0.83% $6.10 lynas rare earths limited

Solar fuel storage using cerium oxide

  1. 989 Posts.

    Posted in | Solar Energy | Renewable Energy | Energy

    New Study Explores the Quest for Sustainable Fuel

    Published on July 11, 2016 at 5:22 AM
    Written by AZoCleantech
    Jul 8 2016

    The sun provides a clean and infinite source of energy and has the potential to meet the sustainable demands of all future energy requirements. However, one major problem remains: the sun doesn't shine all the time and it is very difficult store its energy.

    Ivo Alxneit, chemist at the Solar Technology Laboratory, Paul Scherrer Institute (PSI), preps for an experiment. Together with fellow researchers at the PSI and the ETH Zurich, he has developed a procedure that uses solar energy to produce fuel. (Photo: Paul Scherrer Institute/Markus Fischer)
    For the first time, scientists from the ETH Zurich and the Paul Scherrer Institute (PSI) have revealed a new chemical procedure that utilizes thermal energy from the sun to directly turn carbon dioxide and water into high-energy fuels. The new process was developed based on a new material combination of rhodium and cerium oxide. This research breakthrough could significantly lead to the chemical storage of solar energy. The study findings are published in the research journal Energy and Environmental Science.

    Energy from the sun is already being used in different ways. While photovoltaic cells turn sun light into electricity, solar thermal systems harness the sun’s thermal energy for heating water or other fluids at a high temperature. The second method is largely used in solar thermal power plants where thousands of mirrors are used to direct the sun light on a boiler wherein steam is produced either directly or through a heat exchanger at temperatures more than 500°C. After that, turbines turn the thermal energy into electricity.

    The PSI and ETH Zurich scientists worked together to develop an innovative alternative to this method. The newly developed process utilizes the thermal energy from the sun to directly turn carbon dioxide and water into synthetic fuel.

    This allows solar energy to be stored in the form of chemical bond. It's easier than storing electricity. The new approach is based on a similar principle to that used by solar power plants.

    Ivo Alxneit, Chemist, PSI
    Alxneit and his collaborators harness heat to produce specific chemical processes that occur only at very extreme temperatures, higher than 1000°C. Developments in solar technology will soon help to achieve such temperatures utilizing the sun light.

    Producing fuel with solar heat

    Alxneit's research is based on the theory of the thermo-chemical cycle process, which comprises of the cyclic method of chemical conversion and the required heat energy, referred to as thermal energy. A decade ago, the potential of turning low-energy substances such as the carbon dioxide and water into energy-rich materials such as carbon monoxide and hydrogen had already been revealed by researchers.

    This can work well using specific materials such as cerium oxide, which combines the metal cerium with oxygen. Cerium oxide frees some oxygen atoms during temperatures of more than 1500°C and tries to reacquire oxygen atoms at very low temperatures. When carbon dioxide and water molecules are directed toward an activated surface, they discharge oxygen atoms (chemical symbol: O). During the process, carbon dioxide (CO2) is converted into carbon monoxide (CO), and water (H2O) turns into hydrogen (H2) at the same time as the cerium re-oxidizes itself, creating the preconditions to begin the cerium oxide cycle again.

    The carbon monoxide and hydrogen produced during this process can be utilized to generate fuel, particularly, fluid hydrocarbons or gaseous such as methane, diesel and petrol. These fuels can be utilized directly, however, they can also be stored up in tanks or supplied into the natural gas grid.

    One process instead of two

    So far, Fischer-Tropsch Synthesis, a process developed in 1925, was required for this kind of fuel production. Recently, the European research consortium SOLARJET suggested a new way to combine the Fischer-Tropsch and a thermo-chemical cycle procedure.

    Although this basically solves the storage problem, considerable technical effort is necessary to carry out a Fischer-Tropsch Synthesis.

    Ivo Alxneit, Chemist, PSI
watchlist Created with Sketch. Add LYC (ASX) to my watchlist
(20min delay)
Mkt cap ! $5.451B
Open High Low Value Volume
$6.22 $6.34 $6.08 $23.38M 3.779M

Buyers (Bids)

No. Vol. Price($)
7 8498 $6.10

Sellers (Offers)

Price($) Vol. No.
$6.11 8416 10
View Market Depth
Last trade - 12.04pm 08/03/2021 (20 minute delay) ?
0.050 ( 0.02 %)
Open High Low Volume
$6.24 $6.34 $6.07 677447
Last updated 12.24pm 08/03/2021 (live) ?
LYC (ASX) Chart
arrow-down-2 Created with Sketch. arrow-down-2 Created with Sketch.